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Abstract. The rotating-frame nuclear magnetic relaxation rate of spins diffusing on a
disordered lattice has been calculated by Monte Carlo methods. The disorder includes not
only variation in the distances between neighbouring spin sites but also variation in the hopping
rate associated with each site. The presence of the disorder, particularly the hopping rate
disorder, causes changes in the time-dependent spin correlation functions which translate into
asymmetry in the characteristic peak in the temperature dependence of the dipolar relaxation
rate. The results may be used to deduce the average hopping rate from the relaxation but the
effect is not sufficiently marked to enable the distribution of the hopping rates to be evaluated.
The distribution, which is a measure of the degree of disorder, is the more interesting feature
and it has been possible to show from the calculation that measurements of the relaxation rate
as a function of the strength of the radiofrequency spin-locking magnetic field can lead to an
evaluation of its width. Some experimental data on an amorphous metal–hydrogen alloy are
reported which demonstrate the feasibility of this novel approach to rotating-frame relaxation in
disordered materials.

1. Introduction

Atomic motion in disordered materials is generally characterized by a distribution of
diffusion hopping or re-orientational rates. Measuring the average jump rate is relatively
simple but there are very few experiments which can determine the distribution. Clearly
only measuring techniques such as nuclear magnetic relaxation and neutron quasi-elastic
scattering, which examine the diffusion as individual hops, are suitable. Even then the
distribution can only be extracted from the experimental data if the atomic correlation
function or some equivalent function is measured. The purpose of this paper is to explore
the relation between the spin correlation functions and disorder in the particular case of
rotating-frame nuclear magnetic relaxation by means of Monte Carlo (MC) methods and to
demonstrate the experimental conditions that must be met if the degree of disorder is to be
extracted from measured relaxation rates.

The high-field dipolar relaxation time,T1, of nuclear spins diffusing on a disordered
lattice has been calculated by us using MC methods and the results presented in a recent
paper [1]. The intention was to provide a means of interpreting nuclear magnetic relaxation
measurements of diffusion in amorphous metal–hydrogen systems in which the individual
sites occupied by hydrogen atoms may have different structural and chemical environments.
It was assumed that the distinguishing feature of the diffusion of the hydrogen atoms in
such materials is a distribution of translational jump rates arising from the variation of
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binding and saddle point energies brought about by the disorder. The MC calculations
showed that the time-dependent spin correlation functions were altered significantly by the
presence of the jump rate distribution, particularly at high spin concentrations. In spite of
the changes to the spin correlation, the disorder turned out to have relatively little effect on
the temperature variation of the relaxation time, mainly because the individual jump rates
behave in an Arrhenius manner and, consequently, the jump rate distribution is temperature
dependent. The change in the temperature variation amounted only to a relatively modest
asymmetry in the characteristic dip inT1.

Almost all relaxation experiments on disordered metal–hydrogen alloys focus on the
variation of T1 with temperature and the MC calculations can be used to interpret such
experiments in terms of the average jump rate of the spins. However, on the separate
and interesting question of whether it is possible to extract the jump rate distribution from
relaxation measurements the calculations imply that it is unlikely that a quantitative result
concerning the jump rate distribution can be obtained from the temperature dependence ofT1

[1]. To put any value on the distribution it is clearly necessary to measure the spin correlation
functions and these are not accessible in typical relaxation experiments. Given that the spec-
tral densities of the local field fluctuations depend on the Larmor frequency,ω0, the nearest
equivalent to obtaining the spin correlation functions is to work in the frequency rather than
the time domain and measureT1 over a wide range of resonance frequency. Unfortunately,
the MC calculations show that a factor of at least 100 in frequency is required in such an
experiment and this is not normally feasible unless several spectrometers are available.

A rather better case can be made for measurements of the rotating-frame relaxation
time, T1ρ . In the weak-interaction approximation under those circumstances whereT −1

1ρ is
near its maximum value, the principal spectral density function depends not onω0 but on
ω1, whereω1 = γB1 andB1 is the strength of the radiofrequency magnetic field, the spin-
locking field, along which the spins relax in the rotating frame. In a typical experiment,
ω0/2π ∼ 40 MHz, B0 = ω0/γ ∼ 10 kG andB1 ∼ 1–10 G. However, it is possible to
obtain radiofrequency fields of the order of 100 G by means of a suitable power amplifier,
so that it may be feasible to conductT1ρ experiments over a range ofB1 sufficiently wide
to observe the effect of the disorder and the obtain the jump rate distribution. With this
in mind we have applied the MC model described in [1] to rotating-frame relaxation in
order to calculate both the radiofrequency field and temperature dependences ofT1ρ . The
present paper, which is meant to be read in conjunction with our earlier paper [1], reports
these calculations. They show the effect of disorder on the spin correlation functions and
demonstrate the conditions under which it is possible to extract the distribution of jump
rates from experimental measurements. The present calculations have been carried out
for translational diffusion but the general approach adopted in them could be applied to
other dynamical situations and other disordered materials in which a distribution of rates is
observed.

2. The Monte Carlo simulation

Perturbation methods [2] lead to a dipolar relaxation rate in the rotating frame,T −1
1ρ , given

by the well known ‘weak-collision’ expression,

T −1
1ρ = (3/8)γ 4h̄2I (I + 1)[J (0)(2ω1)+ 10J (1)(ω0)+ J (2)(2ω0)]. (1)

The spectral densities,J , are the Fourier transforms of the spin dipolar correlation functions
G(m)(t), ω0 is the Larmor frequency andω1 is to be regarded as a measure of the spin-
locking field strength as indicated above. For present purposesG(m)(t) for a system with
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Ns spins is defined as

G(m)(t) =
∑
ij

F
(m)
ij F

(m)∗
ij (t)/Ns (2)

summed over the spin pairsij with

F
(m)
ij (t) = dmY2m(θij , φij )r

−3
ij m = 0, 1 or 2 d2 = (32π/15)1/2 = 2d1 = (3/2)1/2d0

whereY2m(θij , φij ) are normalized second-order spherical harmonics andrij , θij , φij are the
polar components of the vector between the spinsi and j with the z-axis parallel toB0.
TheF (m)ij (t) are random functions of time due to the fluctuations in the magnetic coupling
of the nuclear spin dipoles caused by the diffusion.

The weak-collision approximation holds true whenω0 � ω1 andω2
1 � M2/3, where

M2 is the second moment of the static dipolar field distribution in frequency units. The first
condition is easily met experimentally and the second is satisfied in typical metal–hydrogen
systems ifB1 & 1 G. Fortunately, the second condition can be relaxed when the motion of
the spins is sufficiently fast that the correlation time is small compared withM

−1/2
2 [3] and it

is usually possible to choose experimental temperatures which meet this criterion. In many
cases it will be possible to make measurements at low spin-locking fields and it is useful to
note that, in the limit of smallω1, T1ρ approaches the transverse spin–spin relaxation time
T2, given by

T −1
2 = ( 3

8)γ
4h̄2I (I + 1)[J (0)(0)+ 10J (1)(ω0)+ J (2)(2ω0)]. (3)

Given equations (1) and (2), MC methods can be used to calculate the time variation of the
spin correlation functions for a chosen degree of disorder and the relaxation rates obtained
from these correlation functions by Fourier transform.

The perturbation approach of [2] is generally considered to be applicable to liquids
and ordered solids. The disorder we have in mind does not shift the basic conditions of
the spin system away from those in ordered solids, apart from altering the form of the
correlation functions and lengthening their overall decay. In spite of the disorder there are
no trapped pockets of spins which cannot escape to a different region and are not in contact
with the other spins. The relaxation of spin probes which may be trapped by disorder
has been discussed elsewhere [4]. In the present case we are dealing with a system of
dipolar-coupled like spins which can diffuse over the whole sample. The relaxation of such
spin systems has been studied by memory function methods [5], which in general lead to
a non-exponential decay of the spin magnetization. It is well known that the Markovian
approximation and exponential relaxation inherent in [2] are recovered for short correlation
times. However it can be shown [5] that the conditions in typical high-field longitudinal
relaxation (T1) experiments are such that exponential decays of the magnetization will be
observed even for correlation times greater thanω−1

0 . A result which is independent of the
form of the correlation function and in particular true for correlation functions which can be
regarded as a sum of decaying exponential functions of the type found in both the present
calculations and our previous paper. The criterion, which is readily satisfied for amorphous
metal hydrides, is an experimental measuring time greater than both the decay time of the
correlation function andω−1

0 . A similar discussion has not been given forT1ρ but it can
easily be shown from the results given in this paper that the criterion is also satisfied when
ω0 is replaced byω1. Also the observed decay of the nuclear magnetization in amorphous
metal hydrides is exponential in both types of measurement and the relaxation timesT1

andT1ρ can clearly be defined. With these features in mind we argue that the use of the
perturbation formula of equation (1) is at least a satisfactory first approximation with which
to demonstrate the feasibility of theT1ρ method.
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Only a broad outline of the MC model used for these calculations is given here. The
details may be found in [1]. In the MC simulation tagged spins hop on a network of
sites based on a simple cubic lattice which has been distorted to approximate the structural
disorder of an amorphous alloy. The distortion is produced by displacing the lattice points in
random directions by up to one-third of the interatomic spacing. The restriction to one-third
prevents overlap of neighbouring points. In order to jump to a neighbouring site the spins
have to overcome an energy barrier which in general can be regarded as being made up
of two parts, the site energy required to escape the binding force at the site and the saddle
point energy, the barrier between neighbouring sites. Earlier calculations [6] have shown
that, at low spin–site ratios, saddle point disorder has much less effect on the relaxation
than site energy disorder, presumably because the spins almost always have a choice of
diffusion paths and tend to take those with the lowest barriers. At high spin concentrations
the diffusion paths are limited by site blocking and at any instant a particular spin is likely
to have only one jump direction available to it. It is reasonable to suppose that the full
effect of saddle point disorder will then be felt. Some unpublished calculations by one of
us (JMT) based on the algorithms used in [6] indicate that, in this circumstance, changes
in the spin correlation functions introduced by saddle point disorder are similar to those
for site energy disorder. In contrast to this, it has been claimed that distinguishing the
two types of disorder is possible through the temperature dependence of the relaxation time
since the characteristic dip in the relaxation time (see figure 3) was found to be symmetric
for site disorder and asymmetric for saddle disorder [7]. Our calculations do not give this
result. It can be seen in the next section that the dip is clearly asymmetric for site disorder,
not through any particular feature of the disorder but rather because of the temperature
dependence of the individual jump rates.

As in our previous work [1] we will assume here that the saddle point energy is the
same at all sites and the energy disorder is comprised solely of a random variation in the site
energy. This is a conveniently simple model but, in view of the remarks above, we would
argue that in the limit of very low concentration the addition of saddle point disorder, unless
it is more than an order of magnitude greater than the site disorder, is of no consequence.
We would also argue that it is reasonable to guess that no distinction between saddle and
site disorder can be made at the highest concentration. Also the site energy distribution is
assumed to be uniform between two limiting values of the energy,E = Ê ± δE/2, and the
probability of a hop is taken to have the usual Arrhenius temperature dependence with a
constant pre-exponential factor. This leads to a temperature-dependent distribution of jump
rates given by

ρ(ν) = kT /νδE = 1/nν̂ ln(r) (4)

where ν̂ = ν0 exp(−Ê/kT ) is the hopping rate associated with the mean energy. It is
important to note that in this definition the extent of the distribution can be defined by the
ratio, r, of the maximum and minimum jump rates. In expression (4)ρ(ν) is normalized
to unity in the interval

r−1/2 < n < r1/2 ν = nν̂ r = νmax/νmin = eδE/kT . (5)

As pointed out in the earlier paper [1] the absolute value of the jump rateν̂ is not required
since it enters into the relaxation rate in combination withω1 or ω0. It is also convenient
to introduce reduced values for the temperatureT and activation energyE. The reduced
temperature is defined as2 = T/T0 and the reduced energy asE = E/kT0 whereT0 is
the temperature at whichr = r0. In calculations which include the effect of changes in
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Figure 1. The normalized spin correlation function,G(0)(t), at various reduced temperatures,
2, obtained from the MC calculation for a spin/site ratio of 0.9. Only a small sample of the
MC data points is shown and the solid lines are the sums of five decaying exponential functions
fitted to the data. The degree of disorder is represented by the parameterr as indicated in the
text. It is equal tor0 at2 = 1 and has been given a value of 50.

temperature the degree of disorder is chosen through the value given tor0. In reduced units
the jump rate distribution function becomes

ρ(ν) = 2/nν̂ ln(r0) r = exp(δE/2).

In order to simulate the diffusion a random number generator was used to create attempts
by the spins to overcome the energy barrier and the average jump rate,ν̄(6= ν̂), as a function
of temperature was calculated from the attempt frequency. The spins were allowed to
diffuse and the time dependences of the spin correlation functions were calculated during
the diffusion for a given distribution at a chosen temperature. As indicated in [1] the
actual jump rates were multiplied by a factor to keep the efficiency of the calculations
approximately independent of temperature. This factor was chosen so that each data set
consists of about 3000–5000 points but for clarity only a small sample is given in the
figures. In order to perform the Fourier transform to the relaxation rate a sum of five
decaying exponential functions were fitted to each data set. The rms deviation of the MC
data from the fitted curve is typically∼2×10−4 with the deviation in any point< 3×10−3.

3. The temperature dependence of the relaxation rate

Figure 1 shows the time dependence of the correlation function,G(0)(t), normalized to its
initial value. The points are samples of data from the MC calculation and the solid lines
are the fitted sum of five exponential functions as indicated above. The curves demonstrate
the effect of the temperature dependence of the jump rate distribution on the decay of the
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correlation function. In the figure time,t , is given in units of the average interval between
jumps, τ̄ , whereτ̄ = 1/ν̄ and an increase in2 is to be taken to imply a diminution inr
due to the Arrhenius dependence of the jump rates in the model.

The general features of the correlation function are as follows. When2 = 4.0 the ratio
r = 2.7 andG(0)(t) decays almost exponentially, much as it would if the system were an
ordered one. The departure from exponential is due to spin–vacancy correlations which tend
to reduce the decay rate at larget [1]. As the temperature is reduced andr increases the
overall decay rate grows and so does the amplitude of the tail of the decay, with the result
that at2 = 0.8 the ratior = 133 andG(0)(t) departs significantly from the exponential
form. G(0)(t) is given in figure 1 for a spin–site ratio ofc = 0.9 and, although we do not
offer any data in this paper, it can be shown that ifc is reduced the overall decay rates are
reduced. The effect of the reduction can be seen by reference to our earlier paper [1] for the
correlation functions,G(1)(t) andG(2)(t). In fact the time, temperature and concentration
dependences ofG(0)(t) and these correlation functions are quite similar. It is for this reason
that we have not reproduced any further data ofG(0)(t) in this paper and the reader is
referred to the earlier paper for the general features of the correlation functions.

A full calculation of the relaxation rate,T −1
1ρ , is complicated by the presence of two

variables,ω1τ̄ and ω0τ̄ , which enter into the calculation when the correlation functions
are Fourier transformed to find the spectral densities,J . The presence of̄τ arises from
the units of time in figure 1. In order to simplify the problem we need to have recourse
to experiment. Firstly, as indicated above, the normal practice in experiments is to make
ω1/ω0� 1 and secondly it is usual to chose the temperature in such a way thatT1ρ is near
its minimum value for a givenω1. Under these circumstancesω1τ̄ is of the order of unity
and the termJ (0)(2ω1) in equation (1) is beginning to approach its maximum (asymptotic)
value, whereasω0τ̄ � 1 and the termsJ (1)(ω0) and J (2)(2ω0) are very small. The only
significant contribution to the relaxation rate then comes fromG(0)(t). The condition is well
known but can easily be ascertained by assuming that the correlation functions are decaying
exponentially. The relaxation rates shown in figure 2 have been obtained with this in mind
by Fourier transform of the correlation functions shown in figure 1.

The value of2, and thereforēτ , is a different constant for each curve in figure 2. The
variable on the abscissa isω1 and, as it approaches zero,T1ρ tends towards the asymptotic
value T2 as given by equation (2). For correlation functions which decay exponentially
it can be shown [8] that, when theω0 terms are negligible,T −1

2 is M2/λ, whereM2 is
the frequency second moment of the static dipolar coupling. In ordered systems the decay
constant,λ, is ∼1/τ̄ for rapidly diffusing spins. The curve for2 = 4 corresponds to
r = 2.7, that is not very different from the ordered state for whichr = 1, and it can be
seen from figure 1 that the decay constant of the correlation function is∼1/τ̄ . The small
divergence of the asymptote from unity in figure 2 is indicative of the relatively moderate
departure of the correlation function from the exponential form in this case. As the width
of the distribution of jump rates is increased, that is when2 is reduced, the area under
theG(0)(t) curve grows and with itT −1

2 . Figure 2 shows that, as well as its effect onT1ρ ,
disorder has a significant effect on the transverse relaxation time at temperatures where the
static spectrum is motionally narrowed by the rapid diffusion of the spins.

The data given in figures 1 and 2 show how the MC model can be used to calculate
the temperature dependence of the relaxation rate. Applied strictly as outlined above the
model gives the contribution toT −1

1ρ from the termJ (0)(2ω1) in equation (1). However, in
a realistic case it is necessary to consider the contributions from the other terms, which at
some temperatures could become significant. When calculating the temperature dependence
of the relaxation rateω1 andω0 are given constant values andτ̄ is a variable dependent



Rotating-frame nuclear magnetic relaxation 9103

Figure 2. The relaxation rate,T −1
1ρ , calculated from the correlation functions shown in figure 1.

In the actual calculation of the rate, contributions from the other correlation functions were also
included by setting the ratioω1/ω0 = 0.002 at 2ω1τ̄ = 1, where τ̄ is the average interval
between hops of the spins. In fact such contributions are negligible over the range ofω1τ̄

shown in the figure. As explained in the textT −1
1ρ approaches the asymptoteT −1

2 at smallω1.
At 2 = 4 the parameterr = 2.7, that is the system is close to the ordered state. In this state the
value ofT −1

2 obtained from perturbation theory is approximatelyM2τ̄ , whereM2 is the static
second moment. The figure indicates that the MC calculations reduce to the theoretical value in
the ordered state.

on 2. For example, if2 = 1 is a temperature near that at whichT1ρ is a minimum, then
the relaxation rate corresponds to a value on the curve for2 = 1 in figure 2 at which
2ω1τ̄ ∼ 1 and, as explained above, the contributions from the terms inω0 can be regarded
as negligible. They remain negligible for lower temperatures, for example2 = 0.8 at which
2ω1τ̄ is now>1 by an amount determined principally by the activation energyÊ. On the
other hand, for reasonable values ofÊ and the ratioω1/ω0, it is likely that if 2 is increased
to 4,ω0τ̄ will become∼1 and the contributions fromJ (1) andJ (2) will become significant.

An example of the temperature dependence of the relaxation time,T1ρ , calculated from
the MC model is shown in figure 3. In this figureω1 has been chosen so thatω1τ̄ = 1 at
2 = 1 and the reduced activation energyÊ/kT0 given the value 10. The data points have
been calculated with the ratioω1/ω0 set at 0.002 and the temperature range restricted so that
the contributions fromJ (1) andJ (2) are negligible. Ifω1/ω0 is made 0.01 the contribution
from these terms remains small over most of the temperature range but increases to about
30% near2−1 = 0.6. The curves display the characteristic dip found in the dipolar
relaxation time. In ordered solids (r = 1) the dip is symmetrical around the temperature
at which 2ω1τ̄ = 1 as indicated by the solid curve in the figure. It can be seen that the
presence of a jump rate distribution causes a shift of the minimum and the introduction of
asymmetry into the dip inT1ρ . Raisingr0 increases the asymmetry of the extreme slopes
of the dip but the effect appears relatively small in view of the considerable changes in the
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Figure 3. The dependence ofT1ρ on reduced temperature2 calculated from the MC simulation.
As indicated in the text, the data have been calculated with the ratioω1/ω0 set at 0.002 and
the temperature range restricted so thatJ (0) of equation (1) is the only significant term in the
relaxation rate. Data points are given for various values ofr and the solid line represents the
calculated relaxation time for an ordered system. The figure demonstrates that the effect of the
disorder is to introduce asymmetry into the dip inT1ρ . The minimum valueT1ρ is close to
4ω1/M2, the theoretical value for the ordered state and exponentially decaying spin correlation
functions.

correlation functions that this entails. A further addition to the asymmetry occurs because,
as pointed out in the earlier paper (1),τ̄ does not generally have an Arrhenius dependence
on temperature even though the individual jump rates do. The Arrhenius condition is only
met as a special case whenc = 0.5. Consequently, we have chosenc = 0.5 for the curves
in figure 3 to demonstrate that asymmetry can arise solely from the effect of the jump rate
distribution on the relaxation rate.

Similar features in the temperature dependence were also noted in connection withT1

in our previous paper [1] where it was pointed out that the relatively small change in
the asymmetry is a consequence of the variation ofr and τ̄ with temperature. It can be
demonstrated by reference to figure 2. The calculated values ofT −1

1ρ , each at a single
value of ω1τ̄ , trace out a locus through a family of curves of the type shown in this
figure. Since these curves overlap to some extent over a large range ofτ̄ particularly for
ω1τ̄ >

1
2 the loci tend to be similar in shape at temperatures below the temperature of

the T1ρ minimum whatever the value ofr0. This is also the case, but to a lesser extent,
for higher temperatures andω1τ̄ <

1
2 even though there are substantial differences in the

magnitude of the asymptotic value. It should be noted thatT −1
1ρ in figure 2 is in units of

M2τ̄ and it is necessary to take the change inτ̄ into account when translating from the
locus to the temperature dependence. This has the result thatT1ρ decreases more rapidly
than 1/τ̄ at temperatures above the minimum because the loci rise in this region asω1τ̄

increases. At largeω1τ̄ the slopes in figure 2 are approximately−2 and at temperatures
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below the minimumT1ρ is therefore approximately proportional tōτ . The rising trend of
the loci whenω1τ̄ <

1
2 is the cause of the asymmetry in the curves given in figure 3.

The MC simulation clearly predicts that the presence of a distribution of jump rates
causes an asymmetry in the dip inT1ρ and we would argue that the results of these
calculations should be used to interpret experimental data of the temperature variation of
T1ρ in preference to simpler theoretical models [2]. It should be possible to determine the
average jump rate. On the other hand one can be less sure of putting a precise value on
the distribution of the jump rates from such measurements. In principle the distribution
could be determined from the asymmetry but there are clearly limitations to the use of the
temperature dependence for this purpose because of the weak dependence of the shape of
the curves onr0. The difficulty arises becauser itself is a function of temperature and the
relationship betweenr andT1ρ changes during the course of the experiment. Given that the
spin correlation functions themselves are more strongly dependent onr, the implication is
that only measurements made at a constant temperature are likely to lead to any meaningful
estimate of the degree of disorder.

4. The dependence ofT1ρ on the spin-locking field strength

The marked change in the spin correlation functions depicted in figure 1 shows that
evaluating their time dependence should open up a possible route to ascertaining a value for
r. As indicated in the introduction the spin correlation functions themselves are not generally
accessible by means of relaxation measurements but the spectral density functions are, if
the variation of the relaxation rate with frequency can be measured. Given the restrictions
onω1/ω0 and temperature mentioned above the spectral density function,J (2ω1), andT −1

1ρ
as illustrated in figure 2 are equivalent. The results in this figure are couched in terms of
the temperature but as explained in the previous section they could equally well be given
in terms of the distribution of jump rates. The values ofr corresponding to2 = 0.8, 1 and
4 are 133, 50 and 2.7 respectively and the curves may be regarded as conveying the way
in which the relaxation rate changes withr at a constant temperature.

The general appearance of figure 2 might suggest that the feature which has the most
significant variation is the asymptotic value,T −1

2 , but of course this variation is of no value
in an experiment aimed at placing a value onr. Rather than just measureT2 it is necessary
to obtain the variation ofT −1

1ρ with ω1 in order to differentiate between values ofr. The
difference in shape between the curves given in figure 2 can best be demonstrated by treating
T2 as a normalizing factor to bring the asymptotes into coincidence. Figure 4 gives examples
of such normalized curves for whichT −1

1ρ /T
−1

2 has been calculated at a fixed temperature
with ω1/ω0 = 0.002 atω1τ̄ = 1. In fact the ratioω1/ω0 can be raised to 0.02 and cause a
deviation of only 5% at the highest value ofω1τ̄ in the figure. The fact that it is easy to
differentiate between the curves demonstrates that measuringT1ρ over a wide range ofB1 at
a constant temperature is a feasible method by which the value ofr could be obtained. The
normalization can be achieved by measuringT2 in a separate experiment. It should also be
noted that the very wide range in the value ofr is a consequence of the Arrhenius relation.
It translates into a much smaller variation of the activation energy which is of course the
primary feature of the disorder.

Fitting these calculated curves to experimental data requires yet another reference point
and it is suggested that this could be the position at which the gradient is−1. The main
reason for this choice is that this reference point can be made much clearer by plotting
ω1T

−1
1ρ (with ω1 in units of 1/τ̄ ) rather thanT −1

1ρ since the unit gradient corresponds to the
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Figure 4. The relaxation rate as a function ofω1τ̄ . The rate, normalized toT −1
2 at smallω1τ̄ ,

was calculated at a fixed temperature withω1/ω0 = 0.002 atω1τ̄ = 1 so that the only significant
contribution comes from the spectral densityJ (0). The effect of changing the ratioω1/ω0 is
indicated in the text. The curves reflect the marked change in the spectral densities introduced
by the disorder.

Figure 5. As indicated in the text the productω1T
−1

1ρ rather thanT −1
1ρ itself is more useful in

interpreting experimental results. The data of figure 4 are plotted asω1T
−1

1ρ in the figure with

ω1 in units of 1/τ̄ andT −1
1ρ normalized byT −1

2 .
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maximum ofω1T
−1

1ρ in the new plot. The MC data of figure 4 are repeated in this new form
in figure 5. Of course, when fitting to experimental data it will not be possible to distinguish
between the maxima inω1T

−1
1ρ and a more realistic comparison between the curves requires

yet another re-normalization to the same maximum value. To visualize this effect it is
necessary to imagine the curves slid along the line with unit gradient corresponding to the
T1ρ = T2 asymptote. An example is shown in figure 6 where data are furnished forc = 0.5
rather than 0.9 to give some indication of the range of our calculations. Data of the form
given in figure 6 appear to be the most useful when fitting to experiment. In an experiment,
given the typical parameters quoted above,B1 could range from, say, 1 to 100 G, which with
a judicious choice of̄τ (or T ) could cover the whole of the peak in figure 6 fromω1τ̄ = 0.1
to 10. Depending on the experimental situation, it may also be necessary to have motional
narrowing in order to relax the conditions for the weak-collision approximation forT1ρ .

In order to make use of the MC calculations it is necessary to have data onT −1
1ρ or

J (0)(2ω1) in the form given in figures 4, 5 or 6. Just as the spin correlation functions can
be fitted by the sum of five exponentials the spectral density functions can be fitted by the
sum of five Lorentzian functions. The appendix gives tables of parameters based on this
fitting procedure which can be used to generateJ (0)(2ω1) for a wide range ofc andr. The
resulting spectral density functions are in the form shown in figure 4, that is normalized to
unity atω1 = 0. Any contributions to the relaxation rate from the spectral density functions
involving ω0 will usually be small and can be obtained to a fairly good approximation by
assuming that the normalized functionsJ (0)(2ω1), J (1)(ω0) andJ (2)(2ω0) are the same apart
from the change of variable.

5. Comparison with experiment

In order to make contact with experiment we have made measurements of the hydrogen
spin-locked relaxation time in an amorphous Zr2Pd–H alloy. Binary transition metal
alloys are known to have a distribution of hydrogen binding energies from electrochemical
measurements [9] and there is evidence from internal friction experiments of a distribution of
hydrogen activation energies [10, 11]. The exact form of the energy disorder is not known,
especially the division between saddle and site energies. The computer model includes the
main feature, a distribution of binding energies, and it may be regarded as, a least, a first
approximation to an actual metal–hydrogen system.

The sample was made by first melting the metal components in an argon arc furnace and
then melt spinning to obtain amorphous Zr2Pd. The hydrogen was added by immersing the
sample in hydrogen gas at a pressure of 1 bar and a temperature of 150◦C to produce the
alloy Zr2PdH3.3. The aim of this experiment was not to obtain the temperature dependence
of the relaxation rate but to measureT1ρ at a fixed temperature (295 K) over a wide range
of spin-locking fieldB1 (635 G). It was carried out because, as far as we were aware, no
measurements involving a sufficiently wide range ofB1 had been conducted previously.
The data points in figure 7 are the values ofω1T

−1
1ρ obtained from the experiment, the value

of ω1 and the spin-locking field at each measurement being determined from the length of
the spin-locking rf pulse required to cause the nuclear magnetization to precess through the
angleπ . In addition T2 was determined to be 35± 2 µs from the free induction decay
following a π/2 pulse.

The solid curves in the figure are calculated from the MC simulation. They have been
adjusted to the experimental value ofT2 at smallω1 and their maxima were chosen to
coincide with the data. The quality of the data makes it difficult to place a precise value
on r and for the figure we have simply chosen one of our calculated curves (forc = 0.9)
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Figure 6. The productω1T
−1

1ρ plotted as a function ofω1τ̄ for a spin/site ratio of 0.5. The
form of the curves differs from those of figure 5 in that the data have been normalized by the
maximum value ofω1T

−1
1ρ . In experiments the value ofT2 is assumed to be measured but the

value ofω1τ̄ at the maximum is not usually known. A true comparison of the curves thus entails
not only normalizing them but also shifting them along the line with unit gradient corresponding
to the T1ρ = T2 asymptote. Consequently, the abscissa gives the true value ofω1τ̄ only for
r = 1. In spite of this treatment the curves still show significant changes asr is altered.

which gives a reasonable fit. Nevertheless, it is quite clear that the curve forr = 1 does
not fit the data. Thus, in keeping with the main aim of the experiment, we have established
that the MC calculations can be applied to amorphous systems and that there are features
of the relaxation which can be interpreted by a distribution of activation energies. The
average interval between diffusion hops,τ̄ , can be calculated from the fitting procedure to
be 6.7×10−7 s and the spread in activation energy corresponding tor = 500 is±0.079 eV.
The reason for choosing the temperature of 295 K is that it is known from previous work on
the temperature dependence of the relaxation in amorphous Zr2Pd–H thatT1ρ is a minimum
at∼300 K whenB1 = 7 G [12]. In the earlier work the minimum value ofT1ρ is 230µs
which compares well with 275µs in the present work at the same spin-locking field. The
samples are not identical in that they have slightly different hydrogen to metal atomic ratios.
The equivalent of̄τ in the earlier work was found to be 17× 10−7 s but it is not expected
that the values will coincide since the methods of evaluation are entirely different.

In the earlier work [12] attention was drawn to the fact that the dip in theT1ρ–T
experimental curve is not symmetrical and this was explained on the basis of standard
relaxation models as a change in the activation energy from 0.21 eV at low temperatures
to 0.43 eV at high temperatures. An unusual feature of the data was that this change
in activation energy occurred at a temperature near to, but somewhat higher than, the
temperature of the minimum. It was not possible to give a physical interpretation of
this coincidence or the change in activation energy. The present work offers a different
explanation for the asymmetry found in the experiment, namely the presence of a distribution
of jump rates. By makingT0(2 = 1) equal to 270 K the minima in the curves in figure 3
occur at∼300 K and the activation energŷE turns out to be 0.23 eV. The ratio the apparent
activation energies above and below theT1ρ minimum is 1.4 for the r0 = 100 curve and,
of course, the change in activation energy occurs at a temperature whereT1ρ is near its
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Figure 7. The data points are experimental values obtained for the amorphous alloy Zr2PdH3.3

as described in the text, a typical error bar being indicated by the displaced point to the left of
the peak. The solid curves were calculated from the MC simulation. They have been adjusted
to the experimental value ofT2 at smallω1 and their maxima were chosen to coincide with the
experimental data. They are therefore related to each other in the manner given in figure 6. The
presence of disorder in the sample is clearly demonstrated.

minimum. A greater value of the ratio than this could be obtained if the value ofr0 were
raised. The MC calculations can thus be made to explain the difference in slope of the
experimentalT1ρ–T relationship at the extremes of the dip. Unfortunately, fitting the whole
of the experimental data is not possible, since calculation and measurement do not agree
over the full range of the measurements. The shape of the calculated relaxation curves close
to the minimum is significantly different from that found in the experiment. It is clear from
our work that making calculations with a greaterr0 will not remove this divergence.

These measurements are to be regarded as preliminary to a fuller investigation and are
given merely to establish the feasibility of the method. Nevertheless it is necessary to show
that they were made under the weak-collision approximation of the original theoretical
expressions. The condition thatω0 � ω1 is easily met since even at the maximum
value of ω1 the ratio ω0/ω1 was always greater than 150. The other condition, that
ω2

1 � M2/3, cannot be satisfied for all values ofω1. Assuming that the relaxation rate
of 275µs given above represents the minimumT1ρ , the second moment may be obtained
from the MC data given in figure 3. The value is 3.4× 10−3 µs−2 which is comparable
with M2 = 5.35× 10−3 µs−2 obtained from earlier measurements on a slightly different
sample [13]. Thusω2

1 � M2/3 is reasonably well satisfied for about half the experimental
data points but it cannot be true as theT2 asymptote is approached. The temperature
295 K was also chosen for the experiment because it is high enough to cause substantial
motional narrowing of the resonance line and therefore eases this restriction. That motional
narrowing has occurred can be seen to be the case since the spin correlation time, which is
approximately equal tōτ , is about one order of magnitude smaller thanM−1/2

2 .
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6. Summary

MC calculations of the spin-locked relaxation rate,T −1
1ρ , in a diffusing spin system

characterized by a distribution of jump rates have been made. The results show that the
variation ofT −1

1ρ with the strength of the rf spin-locking magnetic field,B1, depends on the
distribution. The dependence is sufficiently strong to demonstrate that making measurements
at a constant temperature withB1 as a variable can lead to an evaluation of the degree of
disorder. The feasibility of carrying out such an experiment is supported by measurements.

Acknowledgment

The authors are grateful for a grant from the Engineering and Physical Sciences Research
Council in support of this work.

Appendix

The spectral densitiesJ (0) may be calculated as a function ofω1τ̄ from the data given.J (0)

is the sum of five terms of the formab/[b2+ (ω1τ̄ )
2], wherea andb are given as pairs in

the tables. The parametersr andc are those in the main text.

Table A1.

r

c = 0.3
1 a 0.395 88 0.141 12 1.272 11× 10−2 1.381 76× 10−2 1.418 26× 10−3

b 0.852 44 0.383 53 0.116 94 4.381 37 2.546 46× 10−2

20 a −0.636 13 0.178 96 0.807 23 3.080 75× 10−2 1.076 81× 10−3

b 1.109 97 0.312 45 1.109 97 0.131 29 2.787 28× 10−2

50 a 7.934 23× 10−2 0.145 44 6.497 44× 10−3 6.537 05× 10−2 5.369 32× 10−4

b 1.587 09 0.389 48 9.185 16× 10−2 0.135 75 2.165 89× 10−2

200 a 4.892 15× 10−2 8.750 06× 10−2 9.694 50× 10−2 −2.862 75× 10−2 1.786 92× 10−3

b 1.397 28 0.328 70 0.106 10 0.106 10 3.222 24× 10−2

300 a 9.504 60× 10−3 2.374 63× 10−2 7.472 88× 10−2 7.674 08× 10−2 7.960 39× 10−4

b 6.707 10 1.475 24 0.100 79 0.402 72 1.530 30× 10−2

500 a 4.793 64× 10−2 2.684 57× 10−2 4.587 25× 10−2 2.157 50× 10−2 1.173 37× 10−2

b 0.778 76 0.278 17 8.668 74× 10−2 0.188 56 5.893 27× 10−2

c = 0.5
1 a 7.46933× 10−2 0.173 38 1.329 69× 10−2 0.278 38 7.015 10× 10−4

b 1.772 51 0.396 23 0.106 23× 10−2 0.773 63 1.988 35× 10−2

20 a 0.128 04 0.155 67 0.243 65 −0.181 11 3.039 03× 10−3

b 0.340 34 1.099 94 0.171 51 0.179 52 4.295 47× 10−2

50 a −0.263 70 7.144 76× 10−2 7.967 81× 10−2 0.382 07 1.625 80× 10−3

b 0.404 22 1.703 55 0.129 37 0.404 22 3.293 86× 10−2

200 a 2.847 02× 10−2 6.189 98× 10−2 2.148 61× 10−2 6.127 77× 10−2 1.615 33× 10−5

b 2.758 38 0.490 43 5.505 14× 10−2 0.129 59 4.871 29× 10−2

300 a 2.338 51× 10−2 5.822 14× 10−2 2.992 50× 10−2 4.896 85× 10−2 −1.272 33× 10−2

b 2.788 95 0.124 26 3.460 59× 10−2 0.488 49 2.879 31× 10−2

500 a 4.004 76× 10−2 1.333 28× 10−2 2.691 97× 10−2 2.468 26× 10−2 2.073 33× 10−4

b 0.159 25 2.543 01 5.082 70× 10−2 0.631 20 1.170 38× 10−3
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Table A2.

r

c = 0.7
1 a 0.106 20 −1.122 53 3.107 68× 10−2 1.474 99 1.716 10× 10−3

b 1.692 62 0.524 99 0.150 32 0.524 99 2.901 84× 10−2

20 a −2.345 96× 10−2 0.163 26 6.813 60× 10−2 9.285 36× 10−2 1.237 82× 10−3

b 0.260 03 0.364 93 0.133 44 1.189 70 2.290 61× 10−2

50 a 5.558 93× 10−2 7.325 00× 10−2 4.966 88× 10−2 4.918 72× 10−2 1.468 89× 10−3

b 1.645 04 0.438 74 9.946 02× 10−2 0.206 35 2.384 52× 10−2

200 a 1.874 30× 10−2 4.801 27× 10−2 3.018 59× 10−2 3.260 55× 10−2 3.782 45× 10−4

b 0.385 00 0.175 75 4.993 83× 10−2 1.483 84 7.294 47× 10−3

300 a −9.564 11× 10−2 3.093 10× 10−2 7.163 97× 10−2 8.388 35× 10−2 1.463 43× 10−2

b 0.149 39 0.934 76 0.106 21 0.193 36 2.934 04× 10−2

500 a 2.809 38× 10−2 2.719 17× 10−2 −8.768 09× 10−3 2.575 58× 10−2 1.303 84× 10−2

b 6.042 50× 10−2 0.782 40 4.281 42× 10−2 0.162 34 2.386 24× 10−2

c = 0.9
1 a 6.877 11× 10−2 0.338 32 3.480 91× 10−2 −1.789 62× 10−2 3.697 02× 10−3

b 1.456 51 0.467 22 0.170 25 0.321 68 4.630 90× 10−2

20 a 6.661 33× 10−2 0.315 05 5.452 31× 10−2 −0.190 99 2.850 47× 10−3

b 1.128 42 0.308 15 0.122 36 0.308 15 3.051 26× 10−2

50 a 8.563 39× 10−3 7.942 07× 10−2 5.510 77× 10−2 2.482 16× 10−2 7.916 81× 10−3

b 6.408 34 0.355 84 0.103 30 1.429 93 3.523 73× 10−2

200 a 3.181 22× 10−2 1.707 81× 10−2 2.561 60× 10−2 6.735 12× 10−3 5.098 93× 10−3

b 0.251 41 1.219 39 7.390 77× 10−2 2.470 52× 10−2 2.074 50× 10−2

300 a 8.483 93× 10−3 1.577 07× 10−2 2.751 41× 10−2 1.560 61× 10−2 1.987 19× 10−3

b 1.756 98× 10−2 0.245 39 7.847 21× 10−2 0.613 17 2.586 81× 10−2

500 a 5.093 59× 10−3 7.339 33× 10−3 2.170 88× 10−2 1.500 48× 10−2 6.003 46× 10−3

b 0.478 30 2.022 36 5.486 82× 10−2 0.227 24 1.145 56× 10−2
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